Generating lower bounds for the linear arrangement problem
نویسندگان
چکیده
منابع مشابه
Decorous Lower Bounds for Minimum Linear Arrangement
Alberto Caprara DEIS, Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, [email protected] Adam N. Letchford Department of Management Science, Lancaster University, Lancaster LA1 4YX, Great Britain, [email protected] Juan-José Salazar-González DEIOC, Universidad de La Laguna, c/ Astrof́ısico Francisco Sánchez, s/n E-38271 La Laguna, Tenerife, Spain, jjsalaza@...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe planar minimum linear arrangement problem is different from the minimum linear arrangement problem
In various research papers, such as [2], one will find the claim that the minLA is optimally solvable on outerplanar graphs, with a reference to [1]. However, the problem solved in that publication, which we refer to as the planar minLA, is different from the minLA, as we show in this article. In constrast to the minimum linear arrangement problem (minLA), the planar minimum linear arrangement ...
متن کاملLower Bounds for the Graph Homomorphism Problem
The graph homomorphism problem (HOM) asks whether the vertices of a given n-vertex graph G can be mapped to the vertices of a given h-vertex graph H such that each edge of G is mapped to an edge of H. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 2-CSP problem. In this paper, we prove several lower bounds for HOM under the Exponen...
متن کاملLower Bounds for the Quadratic Assignment Problem
We investigate the classical Gilmore-Lawler lower bound for the quadratic assignment problem. We provide evidence of the difficulty of improving the Gilmore-Lawler Bound and develop new bounds by means of optimal reduction schemes. Computational results are reported indicating that the new lower bounds have advantages over previous bounds and can be used in a branch-and-bound type algorithm for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1995
ISSN: 0166-218X
DOI: 10.1016/0166-218x(93)e0168-x